Impaired IFN-α production by plasmacytoid dendritic cells favors regulatory T-cell expansion that may contribute to breast cancer progression.
نویسندگان
چکیده
Infiltration and dysfunction of immune cells have been documented in many types of cancers. We previously reported that plasmacytoid dendritic cells (pDC) within primary breast tumors correlate with an unfavorable prognosis for patients. The role of pDC in cancer remains unclear but they have been shown to mediate immune tolerance in other pathophysiologic contexts. We postulated that pDC may interfere with antitumor immune response and favor tolerance in breast cancer. The present study was designed to decipher the mechanistic basis for the deleterious impact of pDC on the clinical outcome. Using fresh human breast tumor biopsies (N = 60 patients), we observed through multiparametric flow cytometry increased tumor-associated (TA) pDC (TApDC) rates in aggressive breast tumors, i.e., those with high mitotic index and the so-called triple-negative breast tumors (TNBT). Furthermore, TApDC expressed a partially activated phenotype and produced very low amounts of IFN-α following toll-like receptor activation in vitro compared with patients' blood pDC. Within breast tumors, TApDC colocalized and strongly correlated with TA regulatory T cells (TATreg), especially in TNBT. Of most importance, the selective suppression of IFN-α production endowed TApDC with the unique capacity to sustain FoxP3(+) Treg expansion, a capacity that was reverted by the addition of exogenous IFN-α. These findings indicate that IFN-α-deficient TApDC accumulating in aggressive tumors are involved in the expansion of TATreg in vivo, contributing to tumor immune tolerance and poor clinical outcome. Thus, targeting pDC to restore their IFN-α production may represent an attractive therapeutic strategy to overcome immune tolerance in breast cancer.
منابع مشابه
Induction of T Regulatory Subsets from Naïve CD4+ T Cells after Exposure to Breast Cancer Adipose Derived Stem Cells
Background: Adipose derived stem cells (ASCs) provoke the accumulation and expansion of regulatory T cells, leading to the modulation of immune responses in tumor microenvironment. Objective: To assess the effect of tumoral ASCs on the trend of regulatory T cells differentiation. Methods: Peripheral blood naïve CD4+ T cells were co-cultured with ASCs derived from breast cancer or normal breast ...
متن کاملA Regulatory Feedback between Plasmacytoid Dendritic Cells and Regulatory B Cells Is Aberrant in Systemic Lupus Erythematosus
Signals controlling the generation of regulatory B (Breg) cells remain ill-defined. Here we report an "auto"-regulatory feedback mechanism between plasmacytoid dendritic cells (pDCs) and Breg cells. In healthy individuals, pDCs drive the differentiation of CD19(+)CD24(hi)CD38(hi) (immature) B cells into IL-10-producing CD24(+)CD38(hi) Breg cells and plasmablasts, via the release of IFN-α and CD...
متن کاملSpatiotemporal trafficking of HIV in human plasmacytoid dendritic cells defines a persistently IFN-α-producing and partially matured phenotype.
Plasmacytoid DCs (pDCs) are innate immune cells that are specialized to produce IFN-α and to activate adaptive immune responses. Although IFN-α inhibits HIV-1 replication in vitro, the production of IFN-α by HIV-activated pDCs in vivo may contribute more to HIV pathogenesis than to protection. We have now shown that HIV-stimulated human pDCs allow for persistent IFN-α production upon repeated s...
متن کاملCilostazol inhibits plasmacytoid dendritic cell activation and antigen presentation.
BACKGROUND Cilostazol, an anti-platelet drug for treating coronary heart disease, has been reported to modulate immune cell functions. Plasmacytoid dendritic cells (pDCs) have been found to participate in the progression of atherosclerosis mainly through interferon α (IFN-α) production. Whether cilostazol influences pDCs activation is still not clear. In this study, we aimed to investigate the ...
متن کاملTumor promotion by intratumoral plasmacytoid dendritic cells is reversed by TLR7 ligand treatment.
Plasmacytoid dendritic cells (pDC) are key regulators of antiviral immunity. In previous studies, we reported that pDC-infiltrating human primary breast tumors represent an independent prognostic factor associated with poor outcome. To understand this negative impact of tumor-associated pDC (TApDC), we developed an orthotopic murine mammary tumor model that closely mimics the human pathology, i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 72 20 شماره
صفحات -
تاریخ انتشار 2012